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COMPRESSIBLE POTENTIAL FLOW WITH CIRCULATION ABOUT A CIRCULAR CYLINDER
By Max. A, HeasLET

SUMMARY

The potential function for flow, with circulation, of a com-
pressible fluid about o circular cylinder is obtained in series
form including terms of the orders of M* where M is the Mach
number of the free stream. The resulting equations are used to
obtain pressure coefficient as a function of Mach number at o
point on the surface of the cylinder for different values of circula-
tion. The coefficients derived are compared with the Glauert-
Prandtl and Kdrmdn-Tsien approximations which are func-
tions of the pressure coefficients of an incompressible fluid.
For the cases considered, the values of the pressure coefficients
computed from the theory were found to be somewhere between
the two approximations, the first underestimating and the
second overestimating .

INTRODUCTION

In the two-dimensional irrotational flow of & compressible
fluid, where the expansion is assumed to be adiabatic, the
velocity potential is known, to satisfy & nonlinear partial
differentinal equation of the second order. For subsonic
velocities, at least three methods are known for the approxi-
mate solution of this equation. They are usually denoted
as the method of small perturbations, the Rayleigh-Janzen
method, and the hodograph method.

The method of small perturbations (references 1 and 2)
assumes that velocity changes which are brought about by
the airfoil in the uniform parallel air stream are small in
comparison with the velocity of the undisturbed stream.
Under this assumption it is possible to introduce new vari-
ables which reduce the differential equation to a Laplace
equation, and, as a consequence, the problem becomes one
concerning flow in an incompressible fluid, provided the body
is assumed distorted to correspond to the change of variables.
The assumed distortion consists in expansion of the dimen-
sions of the airfoil perpendicular to the direction of the free
stream in the ratio 1/4/1-M2, where M is the Mach number
of the undisturbed stream.

The Rayleigh-Janzen method (references 3 and 4) assumes
that the genernl expressmn for velocity potential may be
written as a series in rising powers of M and with variable
coefficients. These coefficients can be shown to satisfy
certain Poisson differential equations and, if the equations
are integrable, the solution becomes a matter of determining
these coeflicients.

Successive steps, however, become in-’

{ creasingly laborious and the convergence of the series may

be slow, even at relatively small Mach numbers, if the shape
of the body is such that the speed of sound is approached
locally. Solutions, using this method of attack, have been
carried out by C. Kaplan (references 5 and 6), S. G. Hooker
(reference 7), I. Imai (reference 8), K. Tamada and Y. Saito
(reference 9), and L. Poggi (reference 10). Poggi introduced
certain refinements and some of the preceding references
employ this process. It is tantamount to using the so-called
Neumann function in solving given Poisson equations and
will be discussed in the appendix.

The hodograph method is ascribed by writers on that
subject to P. Molenbrock and A. Tschaplygin. Instead of
expressing the velocity potential as a function of coordinates
in the Cartesian or polar plane, the magnitude of velocity
V and its inclination § to an assumed axis are chosen as
independent variables. The resulting differential equation
is linear and can be further simplified by replacing the pres-
sure-volume relationship for adiabatic expansion by the
equation of a line tangent at a point corresponding to the
state of the fluid in the ambient stream. This artifice was
suggested by T. von Kérmén (references 2 and 11) and used
successfully by Hsue-Shen Tsien (reference 12). K. Tamada
(reference 13) has also applied Tsien’s more general results
on elliptic cylinders to compressible flow past a cireular
cylinder.

One noteworthy result of the hodograph method has been
the Kérmén-Tsien expression for pressure coefficient P in
terms of Mach number M and Pac-o, the pressure coeflicient
for M=o0. This expression may be written

1

M? Py 1)
1-M+ 1 A= s

P=PM..0

It always gives, for negative pressure coefficients, a result
greater in absolute value than the Glauert-Prandil formula
which is based on the method of small perturbations,

P=PM—0 _‘h—i_—lﬂ, (2)

and is currently accepted as the more accurate of the two.
From equations (1) and (2) it is possible to compute the
critical Mach number M,, the value of M at which the local
speed of sound is attained, in terms of Pawo. The relations
129



130 REPORT NO. 780-—NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

involving M, and Ppy.o, corresponding respectively to
formulas (1) and (2), are

2 2 v—1 1—1
7M4’[<7+1+7+1M 2) _1}
PM-U 1
V1—M; + M2 Pacy ’ 3)
14++1—0M2 2

and

/ 1 -
P M-ﬂ“"z‘l |:<7+1+z+1M’> 1 1] @

The difficulties inherent in the two latter procedures are
quite as distinctive as their respective approaches to the
problem. As stated before, the Rayleigh-Janzen method
employs classical mathematics, the required terms being
solutions of Poisson equations with given boundary condi-
tions, but the work involved is arduous. In the hodograph
method the principal difficulty is to determine proper bound-
ary conditions in the V, 6 plane. In available calcula-
tions the solution is given with a slight distortion in the
given boundary. It is possible to correct this distortion,
in some cases, so that the final results are not too seriously
affected. When the flow around the body involves circu-
lation, however, the change in the boundary is more serious,
for nonperiodic terms appear and the boundary is no longer
a closed curve. ‘Added circulation does not involve any
essential variations in the Rayleigh-Janzen method, however,
and in this report the velocity potential for such compressi-
ble flow about a circular cylinder has been derived. Since
no theoretical study has been presented, as far as is known,
to determine the error in the Kérmén-Tsien pressure coeffi-
cient, the results obtained in this report furnish a means of
approaching this problem. The results of such calculations,
for various values of circulation, are therefore included.

ANALYSIS

Consider a gas obeying the adiabatic law and flowing
irrotationally in two dimensions. Its equation of motion
may be written in polar coordinates in the form

Vs _1M(230V?, 1080
[1_ M( 1>:|V2‘1’ ST\ or or T2 20 )©®
where

® velocity potential

%%, 100, 10%
VR Setiutr R

v  ratio of specific heats of gas

¢s  velocity of sound in undisturbed flow

U  velocity of free stream
Mach number of free stream <g>

V2 local velocity squared [(b@) tr ( > ]

By the introduction of the variables ¢ and » so that

¢=% and v=lZ;

equétion (6) may be written in the form

Op O0*, 104 O
>ror T2os o) ©

_ (36, 1(26Y;
#=(35) +(3% ®
Following the method of Rayleigh and Janzen, assume that

¢ may be developed in a series of ascending powers of M?
so that

—1 1
[1—77M=(02— 1)] V=

where

p=dot MG+ Mgt . . . . (8)

After substitution of equation (8) in equation (7), elementary
calculations show that

vt tot MLt MAL L L L ©)

where
Odo\? . 1/3¢\?
w=(2)+H( (108)
o [0 0¢1 , 1 Ogy Oy
w2 {30 3 S (100
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In a similar manner, equations (8) and (9) may be substituted
in equation (6) and on equeting coeflicients of the same

powers of M, the following relations for ¢g, ¢1, ¢2, - . .
Tesult:

V=0

7 2
Vig= a(f.o o0

(11a)

12¢ b;’o’) (11b)

7 08 08
V2¢a=% (r—1) (' —1) Vit

3\or ar'*‘PSE"a_a +

3451 Oy’ | 1 d¢gy oy’

2 >r 7720 o9 (11c)

If the equations (11a), (11b), and (11¢) can be solved suc-
cessively for ¢, ¢1, ¢s, . the values may be substituted
in equation (8) to get the potential function for the flow of
a compressible fluid. A step-by-step procedure is therefore
established whereby any desired degree of approximation
to ¢ may be obtained, provided the value of M is within the
region of convergence of the resulting series. HEquation (11a)
is the differential equation satisfied by the potential function
in the case of incompressibility. Once this potential func-
tion is known it is used to evaluate the right-hand member
of the second equation, the solution of which furnishes the
second term in the development of ¢. The method of ob-
taining further terms follows the same general procedure.

Consider now the case of a right circular cylinder of
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infinite length in a compressible fluid, the axis of the cylinder
being at right angles to the direction of steady flow. In
determining the velocity distribution about the cylinder, the
problem may be treated two dimensionally with a circle as
the boundary curve and the equations established in the
Rayleigh-Janzen method may be applied dlrectly in the
following manner. The radius of the circle is arbitrarily
assumed equal to one, and a polar coordinate system is chosen
with origin at the center of the circle and polar axis extending
downstream. The flow about the circle is assumed to be
that resulting from the combination of uniform stream
velocity and circulation about the cylinder. Under these
conditions the classical expression for ¢, is well known.
It may be written

¢0=(r -I-%) cos 0—%]0

where I' is the circulation around the circle, measured
positive in a clockwise direction. For ease of computation it
is convenient to set

and, as a consequencs,

1 K
¢a=<7' —l-';) cos 0—70 (12)
The boundary conditions, in general, are

99 =0 for r=1

> (13a)

and

0

6?,=cos 6 for r=w (13b)

From equations (12) and (10a) -
vo’=<1 +§4>—§ cos 20+K (—,1:+$> sin 0+§ (14)
This result, together with equation (11b), gives

— 2
Vi +3) cos 043 cos 30+

. -1 2 1 K2
K sin 26 (_2?7_?"-513)—?5 cos 8 (15)

The more elementary methods of integration lead to certain
difficulties when an attempt is made to solve for ¢;, in
equation (15). These difficulties result from nonperiodic
terms in the particular integral and resultant trouble in
determining such constants of integration that the necessary
periodicity, in terms of 6, is maintained in the final expression
for the potential function. This difficulty may be obviated,
however, by established methods. (See appendix.) It
follows that the solution of
sin mé

= (16)

VA=

satisfying the boundary conditions

o0
(br Tl 0,(-5')!-»:0

is

r,—ﬂ_l}(when m-}25£8)
(17a)

{(s —2)
m(m—s—]—2) (m+8—2)
and

Q= sin m0{2m+ log r} (when m—+2=s) 17b)
The veracity of these solutions, together with analogous ones
existing when sin m6 is replaced by cos m8, may be checked
easily by substitution in equation (16).

Since equation (15) is a linear differential equation, its
solution is determined by considering each term of the right-
hand member and summing the individual integrals obtained
by means of equations (17a) and (17b). The final result is

¢‘—°°39<12r 2r3+12r5>+
log »

cos 30(4r +12r3>+K sin 20 (8 6r,+24r4+_g_ +
K? cos § (47,-1—1—&.) (18)

In the evaluation of ¢; the calculation follows the same
pattern of development. From equation (10b), together
with equations (12) and (18)

() e ()
cos 40 (1-1_,>+K sin 6

2log r
K sin 30 <—4_r—§-'3—2—r’+ e )T
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This result, together with equations (12), (14), and (18),
substituted in equation (11c), gives

log r

Vis=(r—Dfeos 0 (—3+3—3+7% )-+cos 30 (3-3)+
v (s (oot )
Keintd gt g )+ oot Ta—grgrrta )+

Booon (gt g s )

K cos 0 (153 )| Heos (G2 + o)+

05 30 (3t~ gy )+oos 50 (Ga— )+

1 11 14 .3 6logr, 410gr
K m”(w‘?"ﬁﬁ 3A T +




132 REPORT NO. 780—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

3logr
K sin 49 <4r2+4r*+3 127“34'1290+ >+

— 2 13 logr logr
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5 , 2,3 1 logr 3logr logr
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To integrate, formulas (17a) and (17b) are again resorted
to. The method of integration given in the appendix also
provides integrals corresponding to the new type of terms
appearing in the right-hand member of equation (20). Thus,
the solution of

. —1

log r sin mé

VA="—73 (21)
satisfying boundary conditions
00 00
E’ r-:-l=0’ E'>r--c:s=0’
is
0— sin mB{ 1 + 1 ]
T 2mr |(m+s—2)* " (m—s+2)2
sin mﬁ[ 2m log r +
2mr~? | (m+-s8—2) (m—s-2)
1 1
(m+s—2)*" (m—s+2)’} (228)
when m>s—2. When m=s—2,
—sin mé
Q= <2 log®r 2m log rT2 > (22b)

Proceeding directly with the integration results in the follow-
ing expression-
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APPLICATIONS OF THEORY

Using the expressions for ¢y, ¢;, and ¢, the two-term
approximation for velocity potential is

&=Ul(py+ ¢ M+ ¢, M%) (24)

and from this function the values of velocity at any point in
the plane may be computed. Of particular interest is the
evaluation of
1 0®
Y
for this gives velocity normal to the radius vector of the
point in question and thus, when r=1, is equal to the velocity
at the surface of the cylinder.
Neglecting all terms containing powers of 1/r greater than
the first, Glauert (reference 1) has given his well known
result

108\ (. . K I—3F
~7 06 —U<sm 0+ I— 37 s? a)

and under the same restrictions equation (24) gives

10% . K KM:? cos 20
(‘?—a@ =U( sin0+o 2

__ KM:* cos 20+KM‘ cos 46
8r 16r

These results are identical to the order of M?*.
Velocity at the surface of the eylinder is

V0= U{z sin 045 +M’|:2 sin 0———8“1239—

2K cos 20 , K?sin 6 23 .
S L Zm +M‘|:(7—1)<msm0-

3

11
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23 19 .
§6K cos 40+€EK2 gin 320 K’ sin 30—

K3 cos 20—!—64 K sin 0>+ —— sin 6—

128

25 30+ 50— K 20}

24 sin 8 sin 720 cos

59 71 .
—2'KCOS40+m-K28 mK’Sln30

1
2688 K3 cos 20-!—64 K*sin 0):” (26)
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Results derived from this equation will be presented in
terms of pressure coefficient which is defined as

150 (26)
- where the zero subscripts refer to free-stream conditions.
By means of Bernoulli’s equation it follows that

PM.0=1—(%)’,

where Py, denotes the pressure coefficient for incompres-
sible fluids. If P denotes pressure coefficient for a compres-
sible fluid obeying the adiabatic law, then

P_——H:1+7 1M2<1 V')*'1—1

where M is the Mach number of the free stream and v is
the ratio of specific heats (1.40 for air).

As an approximation for P the Glauert-Prandtl result
(reference 2) is given by equation (2) and the Kérm#én-Tsien
result (reference 2) is given by equation (1).

[ T T 1

—’-——l- Glauert -Prardt! formula
~38f— === Karman - Tsien formula
——-—— One term approximation
—--—7Two term gpproximation
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FI1aURE 1,—Variation of minimum pressure coefficlent with Mach number when circulation
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The velocity at the topmost part of the cylinder may be
found by setting §=90° in equation (25) and the resultant
expresgion is a function of K and M. In figure 1, pressure
coefficient at this point is plotted against M for K=0.
As a test for rapidity of convergence the expressions for
velocity, using only M? (one-term approximation) as well
as M? and M* (two-term approximation), are used. It is
to be noted that the curves diverge greatly near the critical
Mach number, but that for smaller values of M, the curves
derived from equation (25) are together and definitely lie
between the results derived from the Glauert-Prandtl and
Kérmén-Tsien relations. Figures 2 and 3 show the same
equations applied for K=1/4 and 1/2, respectively. It thus
appears from these calculations that the true value of P lies
somewhere between the approximations applied. On the
other hand experimental data, as determined from airfoils,
have shown & better agreement with the Kérmén-Tsien
equation than have the theoretical rcsults obtained here for
the cylinder.

In figures 4 and 5 the same point on the cylinder is under
consideration, but circulation is made negative by setting
K equal to —% and —} in the two cases. As the pressure

Glavert —P;I"ande formula
R | N Harmén - Tsien formula
——-—— One ferm gpproximation
—~-——7Two term approximation
1
I’
—-42 =
)
!
1
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-4/ 4 II
)
] Critical
- Mact —
! numnber
Ry L}
W =40 7
¢ /
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N ! !
g / /
V-39 /" -
[
§ /
2 " £
b / /
Q / /
-38 / 7 . /!
/ / /
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'/ , / /
1 A4
-36 A1 24 -
/ ,///
pd g /
R
-35
(2] ./ 2 3 R S
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FI1GURE 2.—Variation of minimum pressure coefficfent with Mach number when circalation
s xU.
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4.8 ——————=Harmén - Tsien formula
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F16URE 3.—Varlation of minimum pressure coefficient with Mach number when circulation
isisxU.

coefficient gets smaller in absolute value, the theoretical
data agree more nearly with equation (1). For all the
calculations, the one-term and two-term approximations
diverge widely as the Mach number increases. This is to
be expected for, as has been pointed out by Messrs. G. L.
Taylor and C. F. Sharmen in reference 14, the convergence
of the series fails when MM reaches its critical value. For
near-critical velocities, several more terms would be re-
quired to furnish an accurate evaluation of the true potential-
flow pressure coefficient.

Figure 6 shows the value of pressure coefficient at all
points on the surface of the cylinder. These results were
derived from equation (25) with K set equal to ¥% and at a
Mach number of %. Crosses on the graph are at positions
obtained from equation (1) and the circles were determined
by equation (2). The disagreement at the extreme pressure
coefficients is again in evidence.

APPENDIX
For the integmtion of the differential equation

lbda 12%

L ARL R i B (29)
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FIGURE 4.—Variation of pressure coeficdent with Mach number at topmost point of oylinder
when circulation is —14 x U.

with boundary conditions

(%f)r_fo and (%%)r_fo (30)

it is assumed, as in Poggi’s method, that the unit cirele with
center at the origin is surrounded externally by a continuous
distribution of sources such that the source strength of an
element RdRdw is

JR, w)RdRdw (31)

Equation (29) may then be interpreted as the equation for
incompressible flow in such a region.

The velocity potential of an incompressible fluid at point

(r, 8) due to a unit source at (B,w) may be calculated by the
method of images. If this potential is denoted by ¢, then

F=o [% log [1*+-R*—2Rr cos (—w)]+

Llog [},+Rﬂ—¥ cos (0—-w):|+ log 1%] (32)
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The required potential ¢, satisfying equation (29), is therefore

¢(r,0) =%rj;f[log [P+ R*—2Rr cos (f—w)l+
log [;12'-!-32—2—1,@ cos (0—w)]+

2 log 111?] f(B,w) RdRdew (33)
where the integration extends over the region of the plane
lying external to the unit circle.

In the equations under consideration in this report the
function f (B, o) is restricted to one of the forms

sin mw €03 Mmw
F _R:
log B sin mw log B €os Mmw
m,8=1

As an example of the integration process, take the first case
listed. Then, set »’= 1/r, which results in

$(r,0)= 47rf f log (r’—}-Rz 9Rr cos (0—o) ) 2=

f f log( 24 R2— 2Rr’cos(0—w)>——R,—-Rdew—

1 2x
E;ﬁ ) log B ——R—-, RdRdw
=11+I2+Is

Integrating Iy first with respect to w shows immediately
that its value is zero.

For purposes soon evident I is written in the form

L= [ ["1og r1og [ 14 ) o 0—) |}

sin mow
—R,——Rdew (35)

S0 RARdw+

(34

Since the log R? term vanishes, after integration with respect
to w, the expression for 7, may be simplified further by the
substitution

log [1+< > 2R cos (G—w)]— —22 1 (R) cos n(0—w)
since ' <R, and @

q n—l n "R B 81N Mo (CO8 CO8 Nw
+sin 76 sin nw) dRdo=—o | = e = sin mdR
or)y m R

37)

11 sinmg
2 mr™ m-}s—2

= —

To integrate I, the region exterior to the unit circle is
broken into two parts. The first part is a circular ring exter-
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F1GUurE 5.—Variation of pressure coefficient with Mach number at topmost point of cylinder
when creulation is — }4x U.

nal to the unit circle and extending to the-fixed point r, the
second part is the remaining portion of the plane and extends
infinitely. Then

Il=‘%rﬁrﬁh [log r*+log I:l +<I‘j>’—2§ cos (9—"’)]}

ﬁ%m%—&\ﬁmﬁk{log R24
log I:l +(é)2— 2(1—%> cos (o—w)] ’sinR'medew
=Jit+J; (38)

By use of the same series expansion as was previously used,

1 T ox Rm—a+l

JI=—2_7T 777' = sm m(id.R
_Slll__mﬂ 1 ~s+2__ —
Ty r—— (r= 1) when m—s-+}250
_sin mé
== om log r when m—s8+2=0 (39)
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Two term gpproximofion
Glauer?t-Prandtl formula
K&rman - Tsien formula
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Moch number --;5 /

L\ /

N
[

,+/ —

P
é;
/ /r*

]
/

]

[

SR / | /
P / N
\ / L/
N A N
\ |/
NV
40 |

60 120

180 240 300 360

G, deg

F1GURE 6.—Pressure coeficlent on surface of cylinder for compressible flow with circulation.

™ sin mé
2m (m-+4-s—2)rmt—2

(40)

From equations (37), (38), (39), and (40), the solution of
equation (29), for the case in which

fir, =52,

is consequently

= sin mf (8—2) m
¢_m(m—s—|—2) (m+s—2){ 7 ‘—rﬂ} when m-+25g
¢=_;l:::’“ﬂw{é%z+% log 7'} when m+2=s (41)

For the other cases the integration process follows oxactly
the same procedure.
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